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1  |  INTRODUC TION

In quantitative sciences, a common task is to analyse the relation-
ships between two or more variables measured over the same set 

of objects (i.e., individuals, populations, and habitats). Two types 
of variables can describe the relationships between these objects. 
The first type describes an attribute of the object and can be mea-
sured directly on each object individually, such as the weight, size, 
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Abstract
Testing the association between objects is central in ecology, evolution, and quantitative 
sciences in general. Two types of variables can describe the relationships between ob-
jects: point variables (measured on individual objects), and distance variables (measured 
between pairs of objects). The Mantel test and derived methods have been extensively 
used for distance variables. Yet, these methods have been criticized due to low statisti-
cal power and inflated type I error when spatial autocorrelation is present. Here, we 
assessed the statistical power between different types of tested variables and the type 
I error rate over a wider range of autocorrelation intensities than previously assessed, 
both on univariate and multivariate data. We also illustrated the performance of distance 
matrix statistics through computational simulations of genetic diversity. We show that 
the Mantel test and derived methods are not affected by inflated type I error when spa-
tial autocorrelation affects only one variable when investigating correlations, or when 
either the response or the explanatory variable(s) is affected by spatial autocorrelation 
while investigating causal relationships. As previously noted, with autocorrelation affect-
ing more variables, inflated type I error could be reduced by modifying the significance 
threshold. Additionally, the Mantel test has no problem of statistical power when the 
hypothesis is formulated in terms of distance variables. We highlight that transforma-
tion of variable types should be avoided because of the potential information loss and 
modification of the tested hypothesis. We propose a set of guidelines to help choose the 
appropriate method according to the type of variables and defined hypothesis.
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or colour. This type of variable is referred thereafter to point variable 
and is represented as a descriptor of nodes (objects) in Figure 1a. 
Several efficient methods to examine the relationship among such 
variables are available (see Legendre et  al.,  2015; Legendre & 
Fortin, 2010). The second type of variable describes the distance or 
resemblance between two objects and is measured between pairs 
of objects. The simplest example is the least-cost path separating 
two objects (e.g., two populations) across a geographic area. This 
measure cannot be obtained on a single object without information 
pertaining to the second object of the pair (the geographic position 
of the second population) and the environmental resistance separat-
ing these objects (see Figure 1b). Similarly, in population genetics, 
the fixation index (FST) is widely used to estimate genetic differen-
tiation between pairs of populations (e.g. de Queiroz et al., 2017). If 

represented in our three-dimensional network in Figure 1a, the ob-
jects would be populations, and the edges would be pairwise FST val-
ues or least-cost path. We term this type of variable distance variable, 
which includes pairwise similarity (S) and dissimilarity (D) variables. 
Although the two types of matrices (S and D) are distinguished by 
the association between identical objects, which take a value of one 
or zero, respectively, we prefer to use thereafter the most commonly 
used term distance rather than the most generic term resemblance 
(see Legendre & Legendre, 2012).

If the variables of interest are two distance variables, a distance 
hypothesis could be formulated, and the linear or monotonic rela-
tionship between these variables can be assessed using the classical 
Mantel test (Mantel, 1967; Mantel & Valand, 1970). The Mantel test 
was originally developed to study the spatiotemporal dispersion of 

F I G U R E  1  Two types of variables used in quantitative science. (a) These variables can be used to compare objects (point variables) or to 
analyse relationships among them (distance variables). Each node in the illustration represents an object with specific measurable attributes, 
such as its colour or size. These variables can be termed point variables. Another type of variable can only be measured as the interaction 
or the distance between pairs of objects, depicted in the illustration as edges connecting pairs of nodes. These variables are termed 
pairwise distance variables (sometimes pairwise similarity, dissimilarity, or resemblance variables). (b) Some variables can only be-or are better 
represented-as distance variables; for instance, environmental resistance, where each cell in the landscape has a friction value (resistance) 
indicating how difficult it is to cross it (higher values represent more energy needed to cross the cell). The path of least resistance connecting 
two populations (asterisks), indicated by the red arrows, cannot be accurately estimated using the latitudinal and longitudinal coordinates 
measured as point variables; instead, it needs to be measured on a landscape model an expressed using a pairwise distance variable. Pairwise 
distance variables have been shown to have an inflated type I error when affected by spatial autocorrelation and a low statistical power when 
analysed with the Mantel test and its related methods. (c) We simulated spatially autocorrelated data by using a Gaussian Random Field, 
where the relationship between the covariance and the distance h between sampled sites depends on the scale parameter k. The covariance 
decreases with increasing distance h. (d) Example of a spatially autocorrelated landscape and the random distribution of 50 sampling sites 
(scale parameter: k = 0.3). The colours denote a heterogenous level of spatial autocorrelation.
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    |  3QUILODRÁN et al.

diseases (Mantel, 1967), and since then, it has been applied in dif-
ferent fields of the life sciences (e.g., Mateo-Sánchez et  al., 2015; 
Poloni et al., 1997; Sokal, 1979). The Mantel test was later extended 
into the partial Mantel test (PMT), which assesses the correlation 
between two pairwise distance matrices while controlling for the ef-
fect of a third variable, also expressed as a pairwise distance matrix 
(Smouse et al., 1986). A generalization was developed to test the cor-
relation among multiple independent distance variables: the multiple 
regressions on distance matrices (MRM) (Hubert & Golledge, 1981; 
Manly,  1986, 1997). These distance matrix-based methods gained 
popularity because of their ease of use and their ability to summarize 
many variables in a single index (Guillot & Rousset, 2013). When an-
alysing variables of different types (i.e., point variables and distance 
variables), it is common practice to compute pairwise distance matri-
ces from the point data (e.g. computing genetic distances from allele 
frequencies or Euclidean distances from geographic coordinates) to 
analyse the full dataset using distance matrix-based methods from 
the Mantel test family (e.g. Araya-Ajoy & Dingemanse, 2014; Ossi & 
Kamilar, 2006).

Through numerical simulations, Legendre and Fortin  (2010) 
identified a lower statistical power of the Mantel test and its de-
rived forms compared to linear correlation, regression, and ca-
nonical analysis methods, such as Pearson linear correlation and 
redundancy analysis (RDA). Nevertheless, they stated that the 
Mantel test is still appropriate if the hypothesis can solely be formu-
lated in terms of distances. However, to perform the analyses, they 
simulated correlated point variables with the desired correlation in-
tensity, from which they computed pairwise Euclidean distance ma-
trices and tested the correlation between matrices using the Mantel 
test. The hypothesis was thus based on point variables, but tested 
with distance variable methods. Here, we extended their analysis by 
imposing a level of correlation directly on the distance variables, 
i.e., on distance matrices hypotheses in non-Euclidean space.

In population and landscape genetics, testing for spatial auto-
correlation (i.e., isolation by distance) is one of the most common 
applications of the Mantel test (Diniz-Filho et al., 2013). Spatial au-
tocorrelation may appear, among other factors, because landscape 
variability modulates gene flow, leading to patterns of isolation by 
distance, or due to the effect of natural selection and genetic drift 
on the genetic structure of populations (Legendre & Fortin, 2010). 
When the tested variables are spatial autocorrelated, Guillot and 
Rousset (2013) pointed out the inflated type I error associated with 
the Mantel test and PMT. They assessed type I error by simulating 
variables with fixed values of spatial autocorrelation. Here, we ex-
tend their analysis by assessing the type I error rate of the Mantel 
test, PMT, and MRM on variables displaying a range of spatial auto-
correlation intensities instead of the same intensity for all variables. 
Specifically, we perform a detailed analysis of the performance of 
the Mantel test and its derived methods, namely, the PMT and MRM, 
with special attention given to deciphering the conditions under 
which these methods are accurate and well suited. Finally, we dis-
cuss guidelines for selecting appropriate approaches according to 
the type of variables and hypotheses tested.

2  |  MATERIAL S AND METHODS

2.1  |  Analyses using distance matrices

We assessed the performance of three methods designed to test 
the relationship between distance matrices: (1) the Mantel test, 
which compares the relationship between two variables measured 
on a set of n objects organized into n x n pairwise distance matrices, 
estimating a correlation coefficient through a permutation method 
(e.g., Monte Carlo randomization); (2) the partial Mantel test (PMT), 
which is an extension of the Mantel test that allows controlling for 
the effect of a third distance variable that may be correlated with the 
two first variables; and (3) multiple regressions on distance matrices 
(MRM), which extends the classical Mantel test and PMT methods 
by testing the association of a response distance matrix with any 
number of explanatory distance matrices. The MRM method has 
attracted growing attention because (i) it considers the effect of 
multiple explanatory variables; (ii) nonparametric relationships can 
be analysed; (iii) many data types can be analysed (e.g., count, pres-
ence/absence, continuous, and categorical variables); and (iv) it may 
be used to test and quantify spatial autocorrelation on different spa-
tial scales (Lichstein, 2007).

2.2  |  Simulating autocorrelated data

To evaluate the type I error rate, we simulated datasets composed 
of two unrelated variables (x and y) in the case of the Mantel test 
and the PMT, while in the case of MRM, we simulated one or more 
explanatory variables (xi) unrelated to a response variable (y), each 
variable being spatially autocorrelated. We generated pseudo-ob-
servations (si) by using a Gaussian random field, which is a widely 
used model for generating spatially autocorrelated data (e.g. Ober 
et  al.,  2011). In all spatially explicit variables, the covariance be-
tween data points x taken at some spatial location s is assumed to 
decrease exponentially with the distance (h) according to Cov[x(s), 
x(s + h)] = exp(−|h|/k), where k is a scale parameter expressing how 
correlated generated data are, giving meaningful results relative to 
the data sampling window length (see Guillot & Rousset, 2013). The 
larger the value of k, the more autocorrelated the dataset; however, 
autocorrelation decreases with distance (Figure 1c).

Our aim was to generate results comparable to the previous study 
by Guillot and Rousset (2013). Consequently, we followed their pro-
cedure, consisting of simulating a spatially autocorrelated landscape 
where a distance variable is computed as the pairwise distance be-
tween data samples using the Euclidean distance (

�

∑
�

xi+h−xi
�2). 

Distance matrices obtained were used to measure type I error rate, 
as presented by Guillot and Rousset (2013). Figure 1d represents an 
example of a spatially autocorrelated variable over a square space 
and the distribution of random samples.

We ran 200 independent simulations per spatial autocorrela-
tion condition (k = [0,1]) with two sample sizes: 50 samples (n = 50) 
and 200 samples (n = 200). We calculated type I error rate for 
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4  |    QUILODRÁN et al.

(i) the Mantel test (MT), (ii) the partial Mantel test (PMT), using 
geographic distance as the third matrix, and (iii) the multiple re-
gressions on distance matrices (MRM) using up to five distance 
matrices. Because we did not include any correlation between the 
variables xi and y in our simulations, the null hypothesis of no rela-
tionship between them is expected to be true in all cases. We esti-
mated a 95% confidence interval for the type I error rate associated 
with each method. The confidence interval was estimated using 
an asymptotic Gaussian approximation: p̂ ± z1−�∕2

√

p̂
(

1 − p̂
)

∕n, 
where p̂ is the proportion of type I error, n is the sample size, and 
z is the standard normal deviation associated with a two-tailed 
probability α.

All analyses were performed by using R (R Development 
Core Team,  2019). We used the RandomFields package (Schlather 
et al., 2015) for generating autocorrelated variables, the vegan pack-
age (Oksanen et al., 2007) for computing the Mantel test and PMT, 
and the ecodist package (Goslee & Urban,  2007) for performing 
the MRM (see Appendix  S1). Note that all p-values are estimated 
using the upper tail of the null distribution, this procedure being 
the output in the vegan library. It is also a common practice when 
testing the Mantel test with spatially autocorrelated data (Legendre 
et al., 2015).

2.3  |  Statistical power of the mantel test

We used Monte Carlo simulations to assess the statistical power of 
the Mantel test for detecting correlations between two point varia-
bles (case 1) and two distance variables (case 2) with predetermined 
correlation values (ρ(x,y)). We fixed a negative, null or positive cor-
relation between the variables using ρ(x,y) = [−0.5, 0, 0.5]. The null hy-
pothesis is true for ρ(x,y) = 0 and false for ρ(x,y) = 0.5 or ρ(x,y) = −0.5. We 
generated the values of two correlated variables with the method 
of Iman and Conover (1982), which outputs pairs of positive random 
values with the desired correlation (or absence of correlation). We 
tested different sample sizes n = [5, 10, 25, 50, 100], in which n rep-
resents the number of objects compared (Figure  1a). This simula-
tion framework results in a dataset with two variables exhibiting the 
specified amount of correlation, a dataset we subsequently used to 
assess the power of the Mantel test. To evaluate the consequences 
of using the Mantel test to evaluate the correlation between point 
variables (case 1), we followed the procedure performed by Legendre 
and Fortin (2010). This procedure imposes the correlation on point 
variables and then uses these correlated point variables to compute 
distance variables in the form of pairwise Euclidean distances to run 
the Mantel test. Because point variables and distance variables do 
not express the same information, we also evaluated the power of 
the Mantel test when a correlation is imposed directly on distance 
variables (case 2). This second case evaluates situations in which 
the tested hypothesis is based on pairwise distances between ob-
jects (Figure  1a). This could also represent any computation of 
distance based in a non-Euclidean space that preserves the nega-
tive or positive direction of the pairwise differences (e.g., absolute 

distance based on species richness or habitat variables; see Somers 
& Jackson, 2022). We note that the number of pairs of correlated 
values in case 1 is n, as opposed to n(n-1)/2 in case 2. The statistical 
power was estimated as the probability of not having false nega-
tives: 1- P(reject H0 | H0 is true).

We used the package mc2d (Pouillot & Delignette-Muller, 2010) 
to generate variables with imposed correlations, and the ecodist 
package (Goslee & Urban,  2007) to perform the Mantel test. The 
latter package allows computation of two-tailed p-values, which 
we preferred in this section as our imposed correlations between 
tested variables have intensities smaller and larger than zero (see 
Appendix S1).

2.4  |  Simulation of genetic divergence

We explored the performance of the Mantel test when consider-
ing a hypothesis formulated as distance variables affected by spatial 
autocorrelation, and thus potentially influenced by an inflated type 
I error. We used forward-in-time, individual-based genetic simula-
tions, representing two species, each made up of a series of popula-
tions diverging from a common ancestral population. Two scenarios 
were explored, each simulating 100 generations of divergence for 12 
populations per species linearly arranged in a stepping stone man-
ner: (i) scenario 1: independent evolution without gene flow among 
populations, and (ii) scenario 2: bi-directional gene flow where mi-
gration of individuals occurs between neighbour populations. While 
no spatial autocorrelation is expected in scenario 1, some is to be 
expected in scenario 2. Tested distance variables were estimated as 
the pairwise genetic differentiation between populations, measured 
as the FST within both species (see Figure S1).

We ran 200 independent simulations of evolutionary differenti-
ation for these two unrelated species (each species represented by a 
grid of populations). We used the Mantel test to evaluate the level of 
autocorrelation among FST values, computed after 100 generations 
(t = 100). We also used this test to assess the correlation level of FST 
values between species 1 and 2 evolving under: (a) scenario 1 for the 
first species versus scenario 1 for the second species, (b) scenario 2 
versus scenario 2, and (c) scenario 1 versus scenario 2. Phenotypic 
attributes, including flying or swimming capacity, among others, 
could explain different migration regimes in two species inhabiting 
the same geographic area. The correlation level between species FST 
matrices depends on processes driving independent evolutionary 
trajectories. We also used the partial Mantel test to analyse the cor-
relation of FST values of both species, as well as a Pearson correlation 
for the level of heterozygosity of both species. Note that in the last 
condition, the hypothesis is based on point variables (heterozygosity) 
rather than on distance variables (FST). The Mantel and partial Mantel 
test were computed on the ecodist package with two-tailed p-values.

Simulations were performed with the R package ‘glads’ 
(Quilodrán et  al.,  2020). The purpose of this individual-based 
approach is to generate insight into how genetic and demo-
graphic processes can generate patterns of divergence between 
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    |  5QUILODRÁN et al.

populations. The simulations have three levels of scale: (i) ‘gen-
otypes’ that may influence (ii) ‘phenotypes’, which in turn may 
affect (iii) ‘population demography’. Because this implementation 
focused on neutral evolution, individuals were simply character-
ized by their genetic diversity (genotype) and sex (phenotype), 
and grouped in populations (demography) (see below). The indi-
viduals belong to two theoretical species, with parameter values 
inspired by silvereyes (Zosterops lateralis), following Sendell-Price 
et al. (2020).

Each species started (t = 0) with 120 individuals characterized 
by 10 randomly drawn biallelic SNPs distributed along a chromo-
some of 100 Mb. Individuals were assigned a sex by considering 
a 50% sex ratio. At the beginning of simulations, all populations 
within a species started with equal allelic frequencies, represent-
ing the common ancestry of the 12 populations. This initial genetic 
diversity was randomly assigned to each of the 200 independent 
simulations. Each population was iterated over time measured as 
generation step. At each generation, mating pairs were formed in 
a number limited by the number of females, with males randomly 
selected. The offspring number was assigned from a Poisson dis-
tribution with a mean (λ = 3) that varied with population density 
(N): Poisson (�) − N�dem. We included a density-dependent effect 
(σdem = 0.01) to limit population growth, keeping every population 
between 100 and 150 individuals.

The offspring genotype was defined by crossover points 
along the parental genomes, obtained through a Poisson pro-
cess. This considered the physical position of each SNP along 
the chromosome, with the probability of a crossover occurring 
between two SNPs defined by the expected per base recombi-
nation rate (ρ = 1.5 cM/Mb). The mutation rate per site per gen-
eration was μ = 1.1 x 10−8. No migration between populations was 
set for scenario 1 (m = 0), but gene flow between populations was 
set for scenario 2 using a random distribution m = [0.001,0.018]. 
More information about this framework is available in Quilodrán 
et al. (2020) and Appendix S1.

3  |  RESULTS

3.1  |  Type I error rate

When only one variable x or y is affected by spatial autocorrela-
tion, type I error rate is lower than the threshold of 5% for the 
Mantel test (Figure 2a). Results are similar for PMT, showing that 
both methods are valid when one of the two variables (x or y) is not 
affected by spatial autocorrelation (Figure  2b). However, if both 
variables show a level of autocorrelation higher than k ≈ 0.2, these 
methods exhibit type I error rates significantly higher than the 
threshold of 5%. When controlling for geographic distance, sen-
sitivity to type I error is less pronounced with the PMT than with 
the Mantel test when spatial autocorrelation is small (Figure 2a vs. 
Figure 2b). However, the PMT is unable to maintain a type I error 
rate smaller than 5% when k > 0.2. These results are obtained for 

a sample size of n = 50, but a similar trend is found with a sample 
size of n = 200 (see Figure S2).

When examining type I error rate associated with MRM, our re-
sults show that if no autocorrelation is present within the dataset, 
there is no inflated type I error (k = 0; Figure 2c). This finding is also 
true when either the response (y) or all the explanatory variables (xi) 
are not autocorrelated. However, an inflated type I error rate ap-
pears when autocorrelation is present in both the response (y) and 
explanatory variables (either one or more xi). In this case, type I error 
rate increases as the number of explanatory variables affected by 
autocorrelation increases, and as the level of autocorrelation within 
the dataset increases (in our example: k = 0.3 and k = 0.7; Figure 2c).

3.2  |  Statistical power of the mantel test

We ran a power analysis on the Mantel test by setting predefined 
negative, positive, or no correlations between two positive random 
variables (ρ(x,y) = [−0.5, 0, 0.5]). To be comparable with previous stud-
ies, these variables were first considered point variables and were 
subsequently used to compute distance variables. Second, we con-
sidered these variables to be two distance variables linked with the 
predefined correlation intensity and organized them into pairwise 
distance matrices. Our results (Table 1) indicate that the Mantel test 
exhibits low power when the correlation is applied to point variables 
later transformed into distance variables. In this case, the Mantel 
coefficient r is always much smaller than the applied correlation in-
tensity. Furthermore, when the correlation set between the original 
point variables is negative (ρ(x,y) = −0.5), the Mantel test does not de-
tect the negative nature of the association. However, the Mantel test 
has no power issue when the correlation is directly set on distance 
variables. In such a case, the value of Mantel's r is very close to the 
predetermined correlation value, and the test is able to find the cor-
rect nature of the association between the two distance variables, 
including a negative correlation. Lastly, our results also indicate that 
statistical power increases with the sample size n (number of objects 
compared) as the measured and initially imposed correlation values 
become similar (Table 1, Figure S3).

3.3  |  Simulation of genetic divergence

We performed forward-in-time evolutionary simulations of the ge-
netic diversity of two unrelated species, each distributed in 12 popu-
lations, diverging over the course of 100 generations (Figure 3 and 
Figure S1). When species evolved in the absence of among-popula-
tion gene flow (scenario 1 vs. scenario 1), we notice no inflated type 
I error rate associated with the Mantel test when comparing the FST 
values of both species. Similarly, no inflated type I error is observed 
when populations of a single species are evolving in the presence of 
bi-directional gene flow in a stepping stone manner (scenario 1 vs. 
scenario 2). Yet, inflated type I error is noted when both unrelated 
species evolve under the same condition of bi-directional gene flow 
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6  |    QUILODRÁN et al.

(scenario 2 vs. scenario 2) (Figure 3). In this last situation, the partial 
Mantel test performs better but still has a level of non-corrected 
inflated type I error rate (Figure S4). When analysing a hypothesis 
based on point variables, a Pearson correlation between the hete-
rozygosity of both species is less affected by inflated type I error 
rate (Figure S5).

Because populations are evolving independently in scenario 1 
(i.e., without gene flow), no spatial autocorrelation emerges, i.e., the 
null hypothesis of no isolation by distance is randomly rejected by 

the Mantel test (Figure S6a). However, there is spatial autocorrela-
tion in scenario 2 (i.e., bi-directional gene flow) since FST values are 
influenced by the distance separating pairs of populations, with the 
Mantel test often being statistically significant when testing isola-
tion by distance (Figure S6b). These results confirm our theoretical 
expectation (Figure 2), stating that the null hypothesis (H0) would 
be randomly rejected without excess of type I error when tested 
variables are not autocorrelated (scenario 1 vs. scenario 1), or when 
a single variable is autocorrelated (scenario 1 vs. scenario 2).

F I G U R E  2  Type I error associated with hypothesis testing between spatially autocorrelated variables. Autocorrelation is given by the 
parameter k. Variables x and y are uncorrelated. For (a) the Mantel test and (b) the Partial Mantel test (PMT), the colour coding indicates type 
I error rates, and white lines delimit areas where type I error is higher than the threshold of 5% in a confident interval of 95%. For (c) multiple 
regressions on distance matrices (MRM), the asterisk (*) indicates a type I error higher than the threshold of 5% in a confident interval of 
95%. The type I error denotes the rate of simulations that resulted in a rejection of the null hypothesis (� = 0.05). For all methods, results 
correspond to a sample size of n = 50 and 200 simulations per condition of autocorrelation within xi and y variables.
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8  |    QUILODRÁN et al.

4  |  DISCUSSION

The Mantel test and its derived methods (i.e., the PMT and 
MRM) are distance matrix-based approaches to test linear re-
lationships among distance variables (Wagner & Fortin,  2013). 
They have been largely used to test hypotheses in quantitative 
sciences and more specifically in ecology and evolution, but the 
accuracy of results has been criticized due to an inflated type I 
error rate when variables are spatially autocorrelated or due to a 
low statistical power (Debastiani & da Silva Duarte, 2017; Guillot 
& Rousset,  2013; Harmon & Glor,  2010; Legendre et  al.,  2015; 
Legendre & Fortin, 2010; Zeller et al., 2016). Here, we (1) reassess 
the conditions under which these methods are valid for testing as-
sociations among variables, and (2) improve upon previous evalu-
ation by testing their performance in a wider range of distance 
hypothesis scenarios.

4.1  |  Autocorrelated variables: type I error

Two variables may produce significant linear relationships simply 
because they are both autocorrelated, even though they are oth-
erwise linearly unrelated to each another (Bivand, 1980; Dutilleul 
et al., 1993; Legendre et al., 2002). Our results indicate that the 
Mantel test and PMT are not affected by an inflated type I error 
rate when there is no spatial autocorrelation within the data or 
when spatial autocorrelation affects a single variable (x or y). A 
similar result was observed by Legendre et al. (2005) in a simula-
tion study with a fixed value of autocorrelation per variable on the 
Mantel test. We extended this analysis for a range of autocorrela-
tion values in order to quantify the inflated type I error, as well as 
for the MRM, which is also not affected by inflated type I error 
when no spatial autocorrelation is present, or when spatial auto-
correlation is present only in the response variable or in one or 

F I G U R E  3  Quantile-quantile p-values obtained from simulated genetic differentiation of two independent species. p-values from the 
Mantel test are shown on the y-axis and the corresponding quantile from a uniform distribution on the x-axis. Values aligned along the 
diagonal indicate no inflated rejection of the null hypothesis (type I error). The type I error rate is computed for a targeted threshold of 
5% (� = 0.05). Twelve populations per species were simulated with 100 generations of divergence from a common ancestor. Populations 
were either completely isolated without gene flow (scenario 1) or interconnected by migration with gene flow in a stepping stone manner 
(scenario 2). Pairwise genetic differentiation (FST) between populations per species under identical or distinct evolutionary scenarios was 
computed from a set of 10 SNPs. These markers were randomly located and simulated along a chromosome of 100 Mb with a level of 
recombination (1.5 cM/MB) and a mutation rate per site per generations (1.1 × 10−8). All parameters are based on a bird case study (see 
methods).
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    |  9QUILODRÁN et al.

more explanatory variables. When spatial autocorrelation is pre-
sent in both the response and at least one explanatory variable, 
we show that the type I error rate increases with the intensity of 
spatial autocorrelation and the number of autocorrelated explana-
tory variables, as similarly identified by previous studies of the 
Mantel test and PMT (Crabot et al., 2019; Guillot & Rousset, 2013; 
Oden & Sokal, 1992; Raufaste & Rousset, 2001; Rousset, 2002). 
Although the PMT aims to correct the spatial correlation and per-
forms slightly better than the Mantel test, it is not sufficient to 
correct the spatial correlation affecting both variables tested (see 
Raufaste & Rousset, 2001; Rousset, 2002).

4.2  |  Testing for spatial autocorrelation and 
isolation by distance (IBD)

In eco-evolutionary studies, the Mantel test is the most commonly 
used tool for testing isolation by distance (IBD) (Perez et al., 2018), 
i.e., for testing the effect of geographic distance (spatial autocor-
relation) on population genetic structure (Figure  S6). However, it 
has been argued that Mantel's r does not provide an accurate de-
composition of spatial genetic variation (Legendre & Fortin, 2010) 
and that it cannot answer the question of how migration limitation 
affects the spatial distribution of genetic variation within a species 
(Meirmans,  2015). The problem can be explained as follows. For 
a given spatial scale, when the migration rate is extremely low, a 
very limited fraction of the total genetic variation will be spatially 
autocorrelated because populations will be genetically different ir-
respective of the geographic distance separating them. This very 
limited spatial autocorrelation will result in a small value of Mantel's 
r. With an increasing migration rate, an increasing fraction of the 
total genetic variation will be spatially autocorrelated, leading to 
increasing values of Mantel's r. Nonetheless, this trend is gradually 
attenuated when the increase in migration starts to reduce genetic 
differences among populations to the point where the relation-
ship with geographic distance starts to decrease. From that point 
on, the fraction of the total genetic variation that is spatially au-
tocorrelated decreases gradually, leading to the expectation of a 
matching reduction in Mantel's r. However, this expectation is not 
met as Mantel's r continues to grow as the migration rate increases 
(Meirmans, 2015), thus gradually losing its relationship with spatial 
autocorrelation of the total genetic variation. This description re-
flects the gradual loss of collinearity between spatial autocorrela-
tion and increasing population structure, a situation that violates 
the linearity assumption of the Mantel test. Consequently, the clas-
sical interpretation of Mantel's r remains valid when the migration 
rate or gene flow (a combination of migration rate and population 
size) does not disrupt the linear relationship between variables. In 
other cases, alternative methods should be used to test for isola-
tion by distance (see Meirmans,  2015). Note that evaluating the 
spatial correlation on distances classes through Mantel correlo-
grams could help identify non-linear relationships (Diniz-Filho 
et al., 2013).

4.3  |  Statistical power of the mantel test

It has been claimed that the Mantel test should be avoided and re-
stricted to hypotheses that can only be formulated in terms of dis-
tance variables due to the persistent low statistical power of this 
method (Harmon & Glor, 2010; Legendre et al., 2015; Legendre & 
Fortin, 2010). For point variables simulated with a determined cor-
relation value, it has been shown that the correlation retrieved by 
the Mantel test is usually smaller than the one originally imposed 
(Dutilleul et al., 2000) and that the Mantel test cannot detect the 
sign in case of negative relationships between variables (Legendre 
& Fortin, 2010). Our analyses show that a relationship initially nega-
tive becomes positive after point variables are transformed into dis-
tance variables, therefore modifying the initial correlation between 
these points. Current criticisms are thus valid when Euclidean dis-
tance matrices are computed from correlated point variables with-
out reformulating the null hypothesis. By using the simple difference 
between data points instead of Euclidean distance, Somers and 
Jackson (2022) identified negative relationships that are lost when 
using Euclidean methods. We extended this analysis by showing no 
problem of power if the Mantel test is applied to correlated distance 
variables computed directly from the pairwise relationships be-
tween objects, i.e., the tested hypothesis is based on distance vari-
ables in non-Euclidean space. These novel findings suggests the low 
power of the Mantel test and related methods based on Euclidean 
distances should not be generalized to other distance measures 
that could either be computed directly between pairs of objects 
(Figure  1a), or computed from data points in non-Euclidean space 
(Somers & Jackson, 2022).

When point variables are transformed into distance variables, 
they do not express the same information. This is the reason why 
it is recommended not to use distance matrix-based methods on 
distance variables computed from point variables when testing hy-
potheses on original point variables. It is thus important to formu-
late the tested hypothesis in terms of distance variables when using 
the Mantel test or any other related methods. Our results clearly 
show that if we simulate correlated distance variables, the Mantel 
test does not suffer from a lack of power. Overall, we stress here 
that there is no reason to avoid using methods testing for association 
among distance matrices as long as the hypothesis is formulated in 
terms of distance.

There are a number of situations where the relationships be-
tween objects (Figure  1a) can only be described (or is best de-
scribed) as pairwise distance variables, with the associated 
hypotheses thus formulated as distances. In landscape genetics, 
the least cost path taking into account the resistance of the en-
vironment, for instance, can be analysed with pairwise distance 
variables describing how much gene flow can occur between pop-
ulations (reviewed in Spear et al., 2010). When considering species 
as objects, some ecological or genetic interactions are better de-
scribed by such pairwise distance variables, including the recip-
rocal competition intensity, the interbreeding rate, or the size of 
interaction zones between species.
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10  |    QUILODRÁN et al.

4.4  |  Choosing the method according 
to the variables

We suggest some general guidelines for choosing suitable procedures 
to test for the relationship between two or more variables and to 
avoid the pitfalls that we and others have identified (Figure 4). First, 
the basic assumptions justifying the use of methods testing for linear 
relationships should not be violated (e.g. Rencher & Schaalje, 2008). 
Second, because hypotheses formulated using distance variables do 
not convey the same information as when formulated using point vari-
ables, any kind of data transformation should be avoided. Third, if data 

transformation cannot be avoided, the tested hypothesis has to be 
formulated in the context of the set of variables being analysed (point 
variables or distance variables, Figure 1a). In this last case, for example, 
one may be interested whether there is an association between a trait 
frequency within populations (i.e., the response variable expressed as 
a point variable) and the environmental resistance separating pairs of 
populations (i.e., the explanatory variable is expressed as a pairwise 
distance variable). Alternatively, one may ask whether the number 
of migrants between pairs of populations (i.e., response variable ex-
pressed as a distance variable) is related to each population's census 
size (i.e., the explanatory variable expressed as a point variable).

F I G U R E  4  Decision scheme for choosing appropriate methods according to the type of variable analysed. Because hypotheses 
formulated as distance or point variables are not expressing the same information, any kind of data transformation should be avoided, 
except when the research involves variables of different types. (*) When the response variable is in the form of a point variable and when 
there are a single or few explanatory variables in the form of distance variables, we recommend transforming the distance variable(s) into 
point variables. This is to avoid the loss of power pertaining to using distance matrix-based methods on hypotheses based on point variables 
transformed into distance variables. (**) However, if the number of explanatory variables is large as compared to the sample size, the 
methods for hypothesis testing may perform poorly. This problem can be solved by transforming the response point variable into a distance 
variable, and analysing the data with Multiple regression on distance matrices (MRM). There is no reason to avoid distance matrix-based 
methods for testing hypotheses based on distance variables without spatial autocorrelation in either response or explanatory variables. 
When autocorrelation affects both types of variables, adapting the P-value threshold could allow a confident use of these methods. Note 
that there is no discrimination between explanatory and response variables in the Mantel test and Partial Mantel test (PMT), both methods 
perform without inflated type I error when one of the tested variables is not spatially autocorrelated. (†) In addition, transformation of 
distance variables into point variables must be avoided for non-Euclidean relationships. This could be the case with distance variables 
obtained without previous transformation from point variables. In such a case distance matrix-based methods should be preferred (e.g., 
MRM, Mantel test), but note that PMT may still poorly correct for the effect of a third distance variable influencing both tested variables. 
Lastly, there is no loss of power associated with the Mantel test and related methods when the hypothesis is formulated in terms of distance 
variables.
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    |  11QUILODRÁN et al.

We refer to explanatory and response variables in our deci-
sion scheme (Figure 4), however, note that there is no discrimina-
tion between these variables when testing for correlations (e.g., 
Mantel test and PMT) instead of causal relationships (e.g., MRM). 
Perhaps, the more straightforward case is when the response 
variable is in the form of a distance variable and there are one or 
more explanatory variables in the form of point variables. In this 
case, distance-based redundancy analysis (db-RDA), which was 
originally described by Legendre and Anderson  (1999) could be 
the adequate method. The distance matrix of the response data is 
transformed into principal coordinates (PcoA), and these are used 
as input into a redundancy analysis (RDA). PcoA consists of using 
the N-dimensional coordinates directly as point variables in linear 
models. However, because this transformation method is devel-
oped from a Euclidean framework (Borcard & Legendre, 2002), it 
cannot be extended to distance variables represented in a non-Eu-
clidean space. This could be the case when distance variables are 
obtained without previous transformation from point variables, in 
which case distance-matrix based methods should be preferred 
(see threshold correction below).

The situation becomes slightly more complex when the re-
sponse variable is in the form of a point variable and explana-
tory variables are in the form of distance variables. When there 
are one or a few explanatory variables, we advise transforming 
the distance variable(s) into point variables and then using dedi-
cated methods that consider the spatial autocorrelation of point 
variables, such as generalized least squares (GLS), geostatistical 
mixed-effect models (GMM), or RDA. A distance variable can be 
transformed into point variables by deriving its N-dimensional co-
ordinates through PcoA, as well as by considering derived meth-
ods, such as principal coordinates of neighbour matrices (PCNM) 
or Moran's eigenvector maps (MEM) (Borcard et al., 2004; Borcard 
& Legendre, 2002; Dray et al., 2006). Because a loss of informa-
tion may occur during the transformation process, the number of 
coordinate dimensions that captures enough explained variance 
might be kept and used in methods that allow multiple explanatory 
variables, such as RDA, GLS, or mixed-effect models. However, 
when transforming distance variables into point variables, an im-
portant issue is the multiplication of explanatory variables, which 
implies a careful interpretation of the results because of the diffi-
culty in interpreting the many axes of a previously single distance 
variable. When the number of explanatory variables is large rela-
tive to the sample size (i.e., the number of objects compared), then 
testing methods may perform poorly (e.g. Harrell Jr et al., 1996). 
Moreover, these transformation methods are not well suited for 
non-Euclidean distance variables, which may still be preferentially 
analysed with distance matrix-based methods. In both last cases, 
it is therefore preferable to transform the response point variable 
into a distance variable and then analyse the matrices with the 
Mantel test or MRM approach, as long as the hypothesis is formu-
lated in terms of distance. Note that selection of explanatory vari-
ables using MRM has to be avoided, as Franckowiak et al.  (2017) 
showed that indices usually used for model selection (i.e., AIC, 

AICc, and BIC) perform poorly due to maximum likelihoods being 
based on mis-specified models.

When using the Mantel test and derived methods, substantial 
spatial autocorrelation in both the response and explanatory vari-
ables may lead to an inflated type I error rate. Recent approaches 
tried to overcome this problem by replacing the permutation 
method of classical Mantel statistics, which assume samples are ex-
changeable, an assumption that is violated under the influence of 
autocorrelation and pseudo-replication (Clappe et al., 2018; Wagner 
& Dray,  2015). Crabot et  al.  (2019) proposed a promising alterna-
tive, but it is limited by the definition of a spatially weighted matrix 
that strongly influences the performance of the approach when it is 
misestimated. We advise estimating the amount of spatial autocor-
relation within variables using the parameter k presented in Diggle 
et al. (2007) or using Mantel's r, Moran's I (Moran, 1950) or Geary's c 
(Geary, 1954) (Borcard & Legendre, 2012; Wagner, 2004). Note that 
simultaneously testing autocorrelation with different methods could 
prevent false-negative results. Yet, this does not guarantee that 
Type I errors can be avoided, and other statistics may be preferred if 
the dataset could be expressed as point variables (e.g., mixed-effect 
models). If the dataset could only be expressed as a distance variable 
and spatial autocorrelation is found on both sides of a regression 
equation, or within both variables tested for correlation, the ex-
pected excess type I error can be corrected by adapting the signifi-
cance threshold (Diniz-Filho et al., 2013). A conservative procedure 
consists in dividing the significance level of 5% by the number of 
times this threshold level is found in the type I error rate associated 
with the k value estimated from a model of spatial autocorrelation 
(e.g. Diggle et al., 2007). In the context of our simulations, consid-
ering the most critically inflated type I error rate of ~55% obtained 
with the MRM approach and a k = 0.7 for all variables (Figure 3), the 
standard threshold of 0.05 should be divided by 11, resulting in a 
corrected significance level of 0.0045. The same could be extended 
to the Mantel test and PMT that have a maximum error (k = 1) of 
~40% and ~30%. Hence, dividing the threshold by eight or six, re-
spectively, could result in a conservative use of these statistics.

5  |  CONCLUSION

Our detailed analysis shows under which conditions the Mantel test 
and its related methods remain valid approaches. We conclude that 
no reasons exist to avoid them as long as the hypothesis is formu-
lated in terms of distance variables and spatial autocorrelation is ab-
sent, either in the response or explanatory variables when testing 
causal relationships (e.g., MRM), or in a single variable when testing 
correlations (e.g., Mantel test). We show that the previously identi-
fied loss of statistical power is due to the practice of transforming 
point variables into Euclidean distance variables without reformula-
tion of the null hypothesis. Indeed, data transformation from a point 
variable to a distance variable, and vice versa, leads to a critical loss 
of information (Figure  S7) and should thus be avoided. When the 
research involves both variable types, one type of variable has to be 
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transformed into the other type and the null hypothesis has to be 
reformulated in the context of the chosen variable type (Figure 4). 
Finally, our proposed set of guidelines may help further applica-
tions choose the most accurate method according to the hypothesis 
tested.
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